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The second-order resonant interaction of two disturbances which are neutrally 
stable on a linear basis is investigated for cases when the mean flow is, first, an 
inviscid, homogeneous jet and, secondly, a stably stratified, antisymmetric 
shear layer for which the linear eigen-solutions are regular. For the former case, 
the periodic nature of the neutral disturbances is unaffected by the interaction. 
For the latter, the interaction can lead to an O ( d )  temporal growth rate of one 
disturbance, where e is a characteristic disturbance amplitude. 

1. Introduction 
Since the publication of the seminal paper by Phillips (1960), knowledge con- 

cerning the possible exchange of energy between resonantly interacting waves in 
fluids has developed rapidly for, a t  least, the case where no basic flow exists. Most 
of the results are discussed in the recent book by Phillips (1966). If the interaction 
between a finite number of discrete waves is considered, the growth of one wave 
takes place simultaneously with the diminution of another, and a conservation 
condition which relates the amplitudes of the interacting waves can usually be 
found. 

When a mean flow exists, the consequences of resonant wave interaction might 
be even more interesting. The resonant interaction will then not only permit the 
exchange of energy between waves but will also affect the rate at  which energy 
can be transferred from the mean flow to each disturbance, due to alteration of 
the Reynolds stress. 

Raetz (1959; see also the discussion by Stuart 1962) has demonstrated that 
certain unstable, three-dimensional disturbances in Blasius flow fulfil the con- 
ditions for second-order resonance and that they would undergo consequently 
secular variation. However, Benney & Niell (1962) have argued that such varia- 
tion should simply be the manifestation of energy exchange between the inter- 
acting disturbances. 

In  an attempt to clarify the matter, we shall consider two particular inviscid 
shear flows for which two disturbances, which are neutrally stable on a linear 
basis, interact resonantly when terms of the second order are considered. Self- 
interaction effects become important only when terms of the third order are 
considered. On the basis of a second-order analysis, we shall try to decide whether 
both of the waves might become unstable due to the resonant interaction, i.e. 
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whether they would exhibit unbounded growth to the order considered. If so, 
we shall conclude that energy can be transferred from the mean flow to the dis- 
turbances due to the interaction. On the other hand, if bounded behaviour 
results, we shall conclude that the disturbances take part in an energy-sharing 
process involving only themselves. 

2. Analysis of wave interaction 
We make all quantities non-dimensional on the basis of a length L, a velocity 

go, and a density Po. In  the following analysis, the parameter g should therefore 
be taken as 

where go is the gravitational constant. 
It is considerably simpler to consider only two-dimensional flow. We shall 

show that resonant interaction can take place even with this restriction. If we 
define a stream function by 

g = g o L / ~ &  (2.1) 

= a$/ay, v = -a$px, (2.2) 

DplDt = 0 (2.3) 

then the equations which govern the motion of an inviscid, incompressible 
stratified flow are 

and 

where 

We now consider a parallel flow in the x-direction to be perturbed by a small 
disturbance of O ( E )  and seek a solution by expanding in powers of 8, i.e., let 

.. - 
We shall also assume that 

For the linear problem, the Boussinesq approximation is then made, and the 
last two terms in (2.4) are ignored. In  order to use the approximation in the 
O(e2)  analysis, we must then have 

e 9 p. (2.9) 

We shall now restrict the investigation considerably by assuming that: 
(i) only neutrally stable disturbances are involved, (ii) the corresponding eigen- 
solutions are regular throughout the flow field, and (iii) only two waves interact. 
Assumptions (i) and (iii) are made on the grounds of expediency; we might expect 
rather similar results to hold for the case of several resonantly interacting, un- 
stable disturbances, although the analysis would become considerably more 
complicated. Assumption (ii), however, is more restrictive, and we shall discuss 
its implications later. 
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The linear solution can then be expressed as 

11.1 = 91I(Y)(AIEI+A”,~I) + ~ l I I ~ Y ~ ~ ~ I I ~ I I + & ~ I I ~  (2.10) 

P 1  = P 11 (Y) (AIEI + &%) + Plll (Y) (AIIEII +&-&I)* and 

where tilde denotes the complex conjugate and 

(2.11) 

E j  = exp{iaj(x:-cjt)>, Im (c j )  = 0. (2.12) 

The functions pij (y) and dlj (y) satisfy 

Plj = P&j l (?4  - C j L  (2.13) 

where a prime denotes dldy, and 

(2.14) 

where $ l j+O as y-f +GO.  (2.15) 

For future reference, (2.14) is expressed as 

($+) Lj$lj = 0. (2.16) 

After dropping a term of O(q!?2) in accordance with (2.9), the second-order 
problem is given by 

and 
(2.18) 

The solution of this problem presents, in principle, no difficulties unless non- 
homogeneous terms arise which contain the linear eigenvalues in the form (2.12); 
this is the case of resonant interaction. Under assumption (iii), resonance can 
occur only if one wave-number is twice the other, say, 

a,, = 2a1, CI = C I I  = c, (2.19) 

so that EII = E: and E, = E,,I&. These relations are naturally satisfied only 
for a few cases. Besides the case of Helmholtz instability (with c now complex), 
which is somewhat exceptional because (2.19) can be satisfied for all a,, the fol- 
lowing two cases result from a perusal of the survey article by Drazin & Howard 
(1966) : 

(A) a homogeneous jet, 

11.; = sech2y, po = constant, (2.20) 

aI = 1, c1 = $, qbll = sech y tanh y, (2.21) 

aII = 2, cII  = 8, 2 q5111 = sech2 y, (2.22) 

(for a jet, second-order resonant interaction is peculiar to the neutral disturb- 
ances, at  least in two dimensions); 

(B) a stratified, antisymmetric shear layer, 

11.; = U, + tanh y, po = exp { -/3 tanh3g). ( 2 . 2 3 )  
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Miles (1963, figure 3) has shown that an infinite number of independent modes 
can exist for this case. Consider the first two modes which were found originally 
by Garcia (see Drazin & Howard 1966, pp. 77-8), 

cI = U,, = tanh y (sechy)%, J ,  = a,(cc, + 3)/3, (2.24) 

cII = U,, q5,,, = (sechy)+I, J, = (aII - 1) (aII + 2)/3, (2.25) 

where J, is an over-all Richardson number, equal to ,8g in the present notation. 
The conditions (2.19) must be met for a fixed value of J,; this occurs for 

J, = Q, a1 = 1, a,, = 2. (2.26) 

For J, > +> other resonant cases, which involve more than the first two modes, 
can arise; some remarks concerning this possibility will be made later. 

On the basis of known solutions to the linear stability problem for homogeneous 
flow, no other cases appear to be possible, even if three neutral, but two-dimen- 
sional, disturbances are considered. For stratified flow, other cases are possible, 
at  least if the basic flow is antisymmetric. For instance, resonant interaction 
appears to be possible for Hdmboe’s shear flow, which has been studied by Miles 
(1963). This flow is more interesting than that given in (2.23) because the local 
Richardson number is zero at  y = 0 for (2.23). However, the neutral eigen- 
solutions are singular for Holmboe’s case, and a proper analysis would seem to 
require inclusion of the diffusive effects allowed by viscosity and heat conduction. 
A much simpler analysis appears to be possible for the above cases. 

The fact that the conditions (2.19) are satisfied does not necessarily rule out 
the existence of a periodic solution for $2 which involves E, and E,, (cf. the re- 
marks by Longuet-Higgins (1 963) concerning the interaction of two-dimensional 
surface wa,ves). Let us therefore consider this possibility and seek a solution of 

p2 = + ~ ~ 1 1  EI1 + P~~~IEIEI I  + P ~ ~ ~ E I ~ ~  + conjugates. (2.28) 

The possibility of resonance arises only because E, and E,, occur in (2.27, 2.28), 
and sowe shall assume q52111 and q521v can beobtained. By use of (2.13)-(2.16)> the 
following equations for q521 and q5211 are found from (2.17), (2.18) as 

(2.29) 

where 
(2.31) 

W-e note that F(y) contains no terms of O(gB2), as required by (2.9). We also note 
that the non-homogeneous terms are regular throughout the flow field for our 
two cases. 

respectively. A necessary and sufficient condition for a solution to exist to either 
equation is that the non-homogeneous terms be orthogonal to the solution, 

The homogeneous parts of (2.29) and (2.30) are satisfied by q511 and 
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QIj, say, of the homogeneous adjoint equation (cf. Ince 1956, section 9.34), 
which, for the present case (cf. Kelly 1967, equations 4.18-4.19), is simply 

The orthogonality condition is then 
r m  

(2.32) 

(2.33) 

It can be shown directly, at  least for the homogeneous case, that the integrand is 
proportional to the vertical gradient of the Reynolds stress produced by the inter- 
action, averaged over the basic wavelength. The boundary conditions require 
that the Reynolds stress vanish as y+ 00, and so (2.33) is simply a statement of 
this requirement (as is the Rayleigh stability integral with regard to linearly un- 
stable disturbances). If (2.33) is not satisfied, we must allow the non-linear terms 
to exert a secular influence upon the solution so that the condition on Reynolds 
stress is satisfied. 

One further point should be discussed. For case A and for mode I1 in case B, 
the inviscid adjoint functions are singular at the critical layers, and we should 
therefore allow for diffusive corrections in those regions for each function. In  a 
problem of non-linear self-interaction for which a similar difficulty arises, 
Schade (1964) has shown that the result of including such a correction is equiva 
lent to interpreting in the correct manner any integral rendered singular through 
multiplication by the inviscid adjoint function. The correct interpretation is 
provided by use of the path prescribed by Lin (1955, section 8.5). Although 
Schade's analysis pertains to the hyperbolic-tangent flow profile, we shall assume 
that such an interpretation is also correct for the case of a jet. For our particular 
stratified flow, the interaction integral is not singular, and no such difficulty 
arises for that integral. For the more general stratified case, however, the non- 
homogeneous terms in (2.29) and (2.30) would be singular by themselves, and 
the whole analysis would have to be reconsidered. 

Using the above argument for the case of the jet, we find 

M = 12 ( ~ e c h ~ y - $ ) - ~ t a n h ~ y s e c h ~ y d y  = 0. (2.34) 

The integrand is odd, and the residues at the critical layers are found to cancel if 
the path is taken in Lin's manner. We therefore conclude that a second-order, 
periodic solution is possible for case A. 

For case B, with pg = %, we find 

I;", 

(2.35) 

For the antisymmetric shear layer considered, a periodic solution appears to be 
impossible. 

The results make an interesting contrast because q511 and q5111 are the same for 
the two cases, whereas the function {$A"/(& - c)}' differs only by a constant 
facbor. Noting that the density terms in (2.31) behave like the first term for case B, 
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the difference between the two cases appears to be due to the difference in the 
mean flow profile. A physical explanation of the origin of subharmonic oscilla- 
tions in an antisymmetric shear layer, which is based upon the vorticity distribu- 
tion of the mean flow and which points to the results obtained thus far, has been 
advanced by Browand (1965). In general, however, (2.33) indicates that the 
distribution of vertical velocity associated with each disturbance must also be 
considered. 

In order to establish the consequences of resonant wave interaction for the 
antisymmetric flow, we shall consider separately the cases when the interaction 
exerts temporal and spatial influence. This is desirable due to a novel feature of 
the temporal case which occurs for our particular flow. 

3. Interaction of waves with fixed spatial periodicity 
In early analyses of resonant wave interactions, a second-order solution was 

usually sought which exhibited a linear dependence upon time, in addition to the 
basic periodic behaviour. It can be shown that such a solution is inadequate for 
the present problem but that a solution of the form 

$2 = (at24,1 + b@21 + 4 2 1 )  EI + (WlII + $211) EI, 
+ q5zrIIEI E,, + q5zIvE121 + conjugates (3. I)  

is sufficient, although b remains arbitrary in the second-order analysis. The reason 
for the quadratic dependence upon time will be given shortly. The importance 
of (3.1) lies in its interpretation, which is that the secular variation, at least with 
regard t o  mode I, takes place over the scale €4 rather than over the customary 
scale e-l. Using this fact, we shall investigate the problem by allowing A, and 
A,, in (2.10) to become functions of the variable 

We must then redefine (2.7) so that 
7 = € i t .  

and use a similar expansion for the density in place of (2.6). This expansion is 
applicable as long as we are interested only in the initial stages of any instability. 

The order €8 solution for the stream function may be taken in the form (a 
similar expression is obtained for p8) 

where the Abj(r) are arbitrary and the $pi satisfy 

The orthogonality condition discussed in 92 demands that 

(3.3) 

(3.4) 

(3.6) 
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This integral appears in the calculation of the growth rate of a linear disturbance 
with wave-number close to that of the neutral disturbance (cf. Howard 1963, 
equation (13) and thereafter), and we shall interpret any singularity in the cus- 
tomary manner. We then obtain 

tanhysech4ydy = 0 ,  

r m  
MI, = - 10) cotanhysech‘jydy = - 10ni. 

- W  

(3.7) 

The fact that MI, #= 0 demands that 

(3.8) A,, = A,, a constant. 

I n  other words, no change of O(e4) occurs in the amplitude of the mode I1 
disturbance, as the solution (3.1) indicates. Because MI = 0, a solution for 
exists; it is, for /3g = +, 

The vanishing of MI led to the solution (3.1). If only a linear dependence upon 
time had been assumed, MI would have multiplied the constant b,  resulting in an 
indeterminate situation. The quadratic dependence eliminates this difficulty. It 
should be mentioned that Watson (1960, end of 52.1) has discussed the implica- 
tions of a similar situation arising for the problem of self-interaction of slightly 
unstable disturbances. He concluded that velocity functions which become 
singular as ci --f 0 should be included in the analysis. This behaviour in turn dic- 
tates that any equilibrium amplitude should be of O(ci ) .  Here we are not concerned 
with the problem of third-order self-interaction and seek to investigate whether 
or not the second-order interaction of neutral disturbances can lead to instability. 
This leads us to consider the present solution, for which the rate of change of 
each disturbance is allowed to differ, iit least initially. 

Proceeding now to terms o€O(s2),  we express $r2 as (2.27), where QZj = $2j(y, r).  
After solving for pzi in terms of QZi, we obtain 

##I = -gisechy. (3.9) 

Upon application of the orthogonality condition, the integral multipling the 
derivative of A$, is simply MI,  which vanishes. Thus, A31 remains arbitrary to 
this order. The other integrals do not vanish, however, and the following equa- 
tions are obtained: d 2 A ,  16 

d72 385 I -  

dAg1 32 A: = 0. 

+ - - A  A - 0 ,  

dr 525n 

(3.12) 

(3.13) 
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Upon consideration of the real and imaginary parts of (3.12), it is easily shown 
that one root of the characteristic equation indicates that A, can grow ex- 
ponentially at  the rate (161 A,[ /385)*. Although the interaction which excites the 
mode I disturbance is similar to that occurring in parametric resonance phe- 
nomena, the governing equation (3.12) is one order greater than that which 
typically governs such phenomena. This leads to the occurrence of oscillatory 
solutions, as well as the exponentially damped and growing solutions character- 
istic of this type of interaction. 

The resonance which occurs in mode I1 is clearly of the classical type. For 
instance, if we set A ,  = 0 and take A,  to be constant, (3.13) predicts that the 
amplitude of the mode I1 disturbance will grow as e2t. On the other hand, when A,  
grows exponentially, it can be shown that the most rapidly growing term in 

i.e. it  
will tend to reduce the magnitude of the mode I1 disturbance. Hence, the mode I1 
disturbance acts only initially as a catalyst for the transfer of energy from the 
mean flow into mode I (which occurs because $3, has the right form so as to give 
a non-zero Reynolds stress term in the energy transfer equation). While appreci- 
able reduction of the amplitude of the mode I1 disturbance would weaken the 
transfer mechanism, such reduction would occur only after A ,  had grown t o  a 
very large size relative to A,. 

The experimental results of Browand (1966) concerning subharmonic oscilla- 
tions in a homogeneous free shear layer indicate that the amplitude of the pri- 
mary disturbance remains relatively constant during the growth of the subhar- 
monic (see his figure 14). Contrary to the above result, however, the primary 
decreases rapidly once the two disturbances are of comparable size. 

For pg = y, it can be seen from figure 3 of Miles (1963) that three modes, with 
a, = 1, a,, = 2, a,,, = 3, can interact resonantly. The growth rate of mode I1 
would now exceed those of the other two, and this fact leads to the conclusion 
that only algebraic growth is possible. For the more general case, however, when 
the growth rate of each disturbance is of the same order of magnitude, such a 
conclusion would not necessarily be valid. 

will have real and imaginary parts opposite in sign to and 

4. Interaction of waves with fixed frequency 
The previous analysis concerns a very atypical case, and a secular rate of 

change of O(E) due to the interaction would seem to be more customary. This 
does occur if we consider how the interaction affects the streamwise behaviour of 
waves with fixed frequency. In  order to strike the greatest contrast with the 
results of the previous section, we shall take bhe constant U, in (2.23) to be zero. 
In  the appendix to a previous paper (Kelly 1967), it was argued, for the linear, 
homogeneous case, that only spatially decaying solutions are then possible and 
that these involve a change in frequency from the monotonically growing tem- 
poral solutions. Nevertheless, there are solutions to the non-linear problem which 
give rise t o  a slow spatial modulation of the neutral disturbances, as we shall now 
show. 

If we now allow A ,  and A,, in (2.10), (2.1 1) to become functions of the variable 
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and q5211, with 

(4.1) 

B = ex and expand as in (2.6), (2.7), (2.27), the equations for 
c = 0, become 

dA1 
$AL1$21 = - 2 i $ ~ $ 1 1 ~ + 4 ' ( y ) Q l I Q l r I A 1 1 ~ 1  

and 

The orthogonality condition demands that 

- and 

where M is given by (2.33), (2.35) and 

Q j = J  -Lo 

(4.3) 

(4.4) 

(4.5) 

Thus, the Q, are real, positive quantities for either mode. This fact gives rise to a 
conservation condition as follows: multiply (4.3) by A, and use the conjugate of 
(4.4) to obtain 

If 
of (4.6) to (4.6) and integrating, 

= aQI, where a is real, as in our case, we obtain by adding the conjugate 

IA11~+4aIA,11~ = A,, (4.7) 

where A, represents some initial value and, for our case, a = 2.  
This result allows us to make a conjecture concerning the more general case 

when the local Richardson number J,(y) > a, the flow is stable on a linear basis, 
and only non-singular neutral modes can exist (Miles 1961). If secuIar rate of 
change of O ( E )  had occurred for the temporal case, equations similar to (4.3), (4.4) 
would have resulted with the Mj (3.5) replacing the Qi and A,  = A,($), t" = st. If 
non-singular modes interact, the M, and M would be real, and a relation similar 
to (4.7) would hold. Thus, it appears unlikely that energy can be transferred from 
the mean flow due to resonant, second-order interaction if Jl(y) exceeds B by a 
term of O(e). 

The situation is quite different if we consider singular neutral modes, for which 
a condition like (4.7) would appear to be impossible unless (i@&/M1) is real. One 
can show that this exceptional case does occur for Hdmboe's shear flow (Miles 
1963), for which resonant interaction appears to be possible with J, = 9 ,  a, = 1 3, 

a,, = $. For that case, however, a more careful examination of the interaction 
integral is necessary, due to its singular behaviour. Also, as demonstrated by the 
concurrent work of A. Craik, this behaviour can only be aggravated if the interac- 
tion of three-dimensional disturbances is considered. 

The solution of (4.3), (4.4) might be of interest as being representative of the 
transfer of energy between disturbances for the non-singular case. If we concen- 
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trate on obtaining a solution for ]All2, make use of (4.3), its conjugate, and (4.7) 
in an identity for (d2/dB2) ( IAI])2, we can derive the equation 

Although this equation is satisfied by the Weierstrassian elliptic function, it is 
sufficient for our purposes to consider its singular points. Using the customary 
phase plane terminology (Stoker 1950, chapter IIIb), we can say that the origin 
is a saddle point, a centre exists at IA,I2 = 2A0/3, and that closed trajectories 
exist in the phase plane for 0 < IA112 < A,,. The fact that a centre exists indicates 
that strong amplitude modulation is more likely for cases when the relative 
amplitude of one disturbance is initially small. 

0 ‘0 -40 60 80 9-f 
I I I I I I I I I 

FIGURE 1 

Solutions to (4.8) were obtained on an E.A.I. PACE TR-48 electronic analog 
at the U.S. Naval Electronics Laboratory, San Diego, for A, = 1. The initial 
conditions imposed were that the initial gradient of IA,I2 was zero and that IA,12 

had, in turn, the values 0-1,0.7,0*9 at B = 0. The solutions are shown in figure 1. 
The curve for the intermediate value indicates very slight amplitude modulation. 

5. Conclusions 
Our conclusions are necessarily limited by the special nature of the stratified 

shear flow which has been considered. None the less, it does appear that resonant 
wave interaction, when a mean flow is present, is more pertinent to the growth of 
unstable disturbances than to the destabilization of, say, gravity waves. It 
also appears likely, on the basis of the solution obtained in Q 3 and the discussion 
of 8 4, that additional energy transfer from the free stream to reasonantly inter- 
acting unstable disturbances can occur. Further, for the case considered, the 
effects of such transfer can apparently be felt at  a lower order than that at  which 
the interaction occurs. The example of a homogeneous jet indicates, however, 
that satisfaction of the conditions regarding the eigenvalues need not necessarily 
imply that such transfer occurs. 
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